miércoles, 27 de noviembre de 2024

70% de las búsquedas en sitios de ecommerce dan resultados irrelevantes

spot_img

Estudios del sitio E-commerce Platforms arrojan una cifra que inquieta a las empresas: solo el 20% de las usuarios acepta realizar otra búsqueda si la primera no mostró resultados. 

Cientos de miles de búsquedas se hacen a diario en el mundo del e-commerce, pero un alto porcentaje no llega a los resultados esperados. Además, nuevos métodos como la búsqueda por voz serán los protagonistas durante los próximos años, de acuerdo a los especialistas de Snoop Consulting.

La respuesta está en el machine learning, una disciplina científica del ámbito de la inteligencia artificial que crea sistemas capaces de aprender automáticamente. En este contexto, “aprender” es identificar patrones complejos: la máquina que aprende es un algoritmo que revisa los datos y es capaz de predecir comportamientos futuros. En el caso del e-commerce, es el encargado de hacer que oferta y demanda se encuentren. “Es lo que hace tan bien Google que hace coincidir en un mismo lugar al que está buscando con el que ofrece algo. El primer uso más evidente y efectivo del machine learning, son los resultados que muestran relevancia, que son la consecuencia del intento de interpretar lo que pasa en la cabeza del consumidor – usuario, para ofrecerle la respuesta más acorde”, explica Gustavo Guaragna, CEO de Snoop Consulting.

Pero los métodos de búsqueda cambian. Según datos de ComScore, el 50% de las búsquedas serán por voz en 2020, y de acuerdo a MediaPos, en 2 años el 30% de búsquedas se hará sin la necesidad de pantallas. El tipo de búsquedas en base al reconocimiento de imágenes también crecerá. En esta, el usuario no puede expresar lo que quiere pero utiliza imágenes similares para realizar la búsqueda. ¿Qué tienen en común estos métodos?: El machine learning. ¿Qué tipo de empresas pueden implementarlo? Cualquiera dispuesta a trabajar sobre los modelos de datos. Esto no es otra cosa que el análisis de datos, la representación abstracta de datos que tiene como objetivo dar cuenta de las relaciones que estos datos tienen entre sí. Con eso listo, se pueden entrenar las máquinas para hacer las predicciones adecuadas.

Implementar una solución de machine learning no implica necesariamente hacer un desarrollo desde cero, ya que existen modelos pre-entrenados donde esta fase ya fue iniciada. “En Snoop Consulting detectamos que la mayor parte de las empresas necesita modelos ya entrenados. En casos de prevención de fraude, por ejemplo, tienen una buena cantidad de datos y ya estarían dispuestos a crear su propio modelo. O modelos de hábitos de consumo, si soy un ecommerce especializado en un tipo de nicho o de segmento o de producto, se pueden hacer modelos de recomendaciones personalizadas muy buenos”, detalla Guaragna.

Por último, otro área que no hay que dejar de mirar para llegar a la tan buscada conversión es el UX o diseño de experiencia de usuario. “Las tecnologías deben ser útiles pero no invasivas. Por ejemplo, uno de los primeros asistentes tecnológicos fue Clipo, de Microsoft. Resultaba odioso, consumía muchos recursos y generaba mucha frustración porque nunca se llegaba a las respuesta buscadas. El problema no era el machine learning que estaba detrás sino la interfaz de usuario. Hay temas de UX que hay que tener en cuenta cuando uno incorpora esto en el ecommerce, parte de los hábitos que uno puede descubrir: cómo está comportándose un consumidor ante un portal de ecommerce y saber qué está mirando, como mueve el mouse, qué pasa que no cierra la página, etc.”, finaliza Guaragna.

Compartir:

spot_img
spot_img
spot_img
spot_img
spot_img
spot_img

Noticias

CONTENIDO RELACIONADO